一、磁场在医学中的应用?
磁在医学方面的一项重要应用是原子核磁共振成像,简称核磁共振成像,又称核磁共振CT(CT是计算机化层析术的英文缩写)。这是利用核磁共振的方法和电子计算机的处理技术等来得到人体、生物体和物体内部一定剖面的一种原子核素,也即这种核素的化学元素的浓度分布图像。
二、压缩感知在磁场测量中的应用?
认知无线电方向:宽带谱感知技术是认识无线电应用中一个难点和重点。它通过快速寻找监测频段中没有利用的无线频谱,从而为认知无线电用户提供频谱接入机会。传统的滤波器组的宽带检测需要大量的射频前端器件,并且不能灵活调整系统参数。普通的宽带接收电路要求很高的采样率,它给模数转换器带来挑战,并且获得的大量数据处理给数字信号处理器带来负担。针对宽带谱感知的难题,将压缩感知方法应用到宽带谱感知中:采用一个宽带数字电路,以较低的频谱获得欠采样的随机样本,然后在数字信号处理器中采用稀疏信号估计算法得到宽带谱感知结果。
信道编码:压缩传感理论中关于稀疏性、随机性和凸最优化的结论可以直接应用于设计快速误差校正编码, 这种编码方式在实时传输过程中不受误差的影响。在压缩编码过程中, 稀疏表示所需的基对于编码器可能是未知的. 然而在压缩传感编码过程中, 它只在译码和重构原信号时需要, 因此不需考虑它的结构, 所以可以用通用的编码策略进行编码. Haupt等通过实验表明如果图像是高度可压缩的或者SNR充分大, 即使测量过程存在噪声, 压缩传感方法仍可以准确重构图像。 波达方向估计:目标出现的角度在整个扫描空间来看,是极少数。波达方向估计问题在空间谱估计观点来看是一个欠定的线性逆问题。通过对角度个数的稀疏限制,可以完成压缩感知的波达方向估计。
波束形成:传统的 自适应波束形成因其高分辨率和抗干扰能力强等优点而被广泛采用。但同时它的高旁瓣水平和角度失匹配敏感度高问题将大大降低接收性能。为了改进Capon 波束形成的性能,这些通过稀疏波束图整形的方法限制波束图中阵列增益较大的元素个数,同时鼓励较大的阵列增益集中在波束主瓣中,从而达到降低旁瓣水平同时,提高主瓣中阵列增益水平,降低角度失匹配的影响。例如,最大主瓣旁瓣能量比,混合范数法,最小全变差。 运用压缩传感原理, RICE大学成功研制了\单像素压缩数码照相机。 设计原理首先是通过光路系统将成像目标投影到一个数字微镜器件(DMD)上, 其反射光由透镜聚焦到单个光敏二极管上, 光敏二极管两端的电压值即为一个测量值y, 将此投影操作重复M次, 得到测量向量 , 然后用最小全变分算法构建的数字信号处理器重构原始图像。数字微镜器件由数字电压信号控制微镜片的机械运动以实现对入射光线的调整。 由于该相机直接获取的是M次随机线性测量值而不是获取原始信号的N(M,N)个像素值, 为低像素相机拍摄高质量图像提供了可能.。
压缩传感技术也可以应用于雷达成像领域, 与传统雷达成像技术相比压缩传感雷达成像实现了两个重要改进: 在接收端省去脉冲压缩匹配滤波器; 同时由于避开了对原始信号的直接采样, 降低了接收端对模数转换器件带宽的要求. 设计重点由传统的设计昂贵的接收端硬件转化为设计新颖的信号恢复算法, 从而简化了雷达成像系统。 生物传感中的传统DNA芯片能平行测量多个有机体, 但是只能识别有限种类的有机体, Sheikh等人运用压缩传感和群组检测原理设计的压缩传感DNA芯片克服了这个缺点。 压缩传感DNA芯片中的每个探测点都能识别一组目标, 从而明显减少了所需探测点数量. 此外基于生物体基因序列稀疏特性, Sheikh等人验证了可以通过置信传播的方法实现压缩传感DNA芯片中的信号重构。
三、磁场的应用有什么?
信鸽能在遥远的地方飞回而不迷失方向,也是由于地磁的帮助地磁场的强弱叫地磁感(应)强度,地磁场的磁子午线与地理子午线间的夹角叫磁偏角,地球上某处地磁场方向与地面水平方向间的夹角叫磁倾角,这三个物理量称为“地磁三要素”。但是从地球的一个地方到邻近的另一个地方,地磁要素的变化一般都十分微小。
地磁场图记录了地球表面各点的地磁场的基本数据和它们的变化规律,它是航海、航空、军事以及地质工作不可缺少的工具。
船舶和飞机航行时,用磁罗盘测得的是地磁方位角,因此只有知道了当时当地的磁偏角数值,才能确定地理方位和航行路线。
一般来说,地磁要素的变化是很小的,但是跟太阳活动有密切联系的磁暴现象,却发生得十分突然。
这是因为太阳黑子活动剧烈的时候,放出的能量相当于几十万颗氢弹爆炸的威力,同时喷射出大量带电粒子。
这些带电粒子射到地球上形成的强大磁场迭加到地磁场上,使正常情况下的地磁要素发生急剧变化,引起“磁暴”。
发生磁暴时,地球上会发生许多奇异的现象。
在漆黑的北极上空会出现美丽的极光。
指南针会摇摆不定,无线电短波广播突然中断,依靠地磁场“导航”的鸽子也会迷失方向,四处乱飞。
地磁场能阻挡宇宙射线和来自太阳的高能带电粒子,是生物体免遭危害的天然保护伞。
所以这个“超巨”的地磁场,对地球形成了一个“保护盾”,减少了来自太空的宇宙射线的侵袭,地球上生物才得以生存滋长。
如果没有了这个保护盾,外来的宇宙射线,会将最初出现在地球上的生命幼苗全部杀死,根本无法在地球上滋生。
地球上某些地区的岩石和矿物具有磁性,地磁场在这些埋藏矿物的区域会发生剧变,利用这种地磁异常可探测矿藏,寻找铁、镍、铬、金以及石油等地下资源。
在发生强烈地震之前,地磁的三要素也都会发生改变,造成地磁局部异常的“震磁效应”。
这是由于地壳中的岩石,有许多是具有磁性的,当这些岩石受力变形时,它们的磁性也要跟着变化,从而可以较正确地作出“震前预报”。
四、mosfet在电路中的主要应用?
MOSFET(Metal Oxide Semiconductor Field Effect Transistor-金属氧化物半导体场效应晶体管)是一种半导体器件,广泛用于开关目的和电子设备中电子信号的放大。由于MOSFET的尺寸非常小,因此MOSFET既可以是核心也可以是集成电路,可以在单个芯片中进行设计和制造。MOSFET器件的引入带来了电子开关领域的变化。
MOSFET是具有源极(Source),栅极(Gate),漏极(Drain)和主体(Body)端子的四端子设备。通常,MOSFET的主体与源极端子连接,从而形成诸如场效应晶体管的三端子器件
五、谐振电路在实际中的应用?
Minimize VA-rating of the converter. 本质上来说,原边谐振与否是不会影响无线输电传输的距离和功率的。因为只要输电板中有对应的电流大小就可以(或者叫Pad VA)。只是一种是通过谐振把电流提升到,例如,20amp 的pad VA。而另一种需要强行把电流提升到20amp 的pad VA。
举例来说,如果传输1kw功率原边输电板中的电流是20amp,如果应用谐振,那原边只需要1.1kw的逆变器就够了(假设效率90%),忽略ESR,电路可以看成只有反射阻抗一个主要的阻抗。因为电感感抗jwL被电容容抗1/jwC所抵消,两者之间大小相等,相位差180°。320v输入电压仅需提供3.5amp电流。converter 的rating正常。
而如果原边没有谐振,原边线圈中也需要20amp电流副边在同样情况下才能接收1kw功率。但此时不但要克服电路中副边的反射阻抗,还需要克服电感的感抗,假设电感值是300uH,运行在85khz,即jwL为,2*pi*85000*0.0003=160ohm。这次忽略反射阻抗和ESR(都变次要因素了),而20*160=3200V,即是,用3200v强行把160ohm感抗拉出20amp电流,可以简单计算一下converter需要多少功率容量哈。
并且即使运行在感性负载,电路中的损耗也会增大很多,因为VA rating 太大了。而以上两个系统在功率传输,和能传输的距离都是几乎相同的(在再忽略掉一些次要因素的条件下)。
原理同样应用于副边接收端,也应用于四种基本谐振电路,ss,pp,ps,sp。因为耦合系数低才和变压器不一样,是都需要谐振的。而原副边任意一边不加入谐振而仍然使用原先的逆变器的话,就会看到传输功率极大下降,这也就是一般变压器拉开以后传输不过去功率的原因。
再举个不恰当的例子,谐振像是往水塔中蓄水,只需要把水抽到高处水塔,任何一家低于这个高度的住户打开水管都有水了。期间,只需抵消了重力势能(有功)即可,不需要再有额外的麻烦。而不谐振,就像不管住户用不用水,都用水泵一直维持住户水管水压,那住户不开水管的时候,做的功都是白费的。
留意到我国的一些早期论文只做了一半补偿,并把这种方式称作磁感应方式,是非常不对的。磁感应与磁共振,猫叫了咪,电路品质因数Q值不一样而已。早在一个世纪前,特斯拉在其早年的工作中已经使用原副边同时补偿的方式,并且强调例如低ESR,高Q值提升电路传输距离等。具体补偿和谐振包括品质因数等,可以查阅任一本《电路》教材。
——————————////////—————————-那么有没有不谐振的无线输电电路,实际工程当中是有的。据我所知,有一种高压输电监测设备,在50Hz,330kV导线附近使用,就没有补偿。一方面因为监测设备需要功率较小,另一方面频率太低了,补偿电容值会非常大,体积重量可能不可接受,可用LC谐振电路式计算 w=1/2pi*sqrt(LC)。
六、磁场现象的实际应用有哪些?
磁场是普遍存在的物理现象,它与电场一样在日常生活中有着广泛的应用。以下是磁场现象在实际应用中的一些例子:
1. 电动机:电动机的工作原理是基于磁场的。通电的导线所形成的电流会产生磁场,而这个磁场与在磁场中的导体交互作用,使导体受到力的作用。利用这一原理,电动机可以将电能转化为动力,驱动各种机械设备。
2. 手机读取信息:手机的内部组件包含了许多微小的磁性元件,例如磁场传感器和震动马达。这些元件利用电磁原理实现了诸如指南针、晃动警报等功能,使得手机可以更方便地浏览信息和交互。
3. 医学成像:磁共振成像是一种现代医学成像技术,它利用强磁场作用于人体时所发生的磁场相互作用,获取人体内部的结构和功能信息。这一技术在疾病预防、诊断和治疗方面发挥着重要作用。
4. 计算机数据存储:计算机的硬盘驱动器利用的是磁场原理,将电信号转化为磁信号,将数据存储在硬盘中。这一技术可实现高容量、高速度、高可靠性的数据存储,是现代信息技术中不可或缺的一环。
总的来说,磁场在现代工业、科技和医学等领域都有着广泛的应用,而这背后则是人类长期不断探索与实践的结果。
七、光敏在汽车的应用?
应用于多种传感器中,实现空气流量检测,转向角度检测,车速测量,位置测量等功能。
汽车上一般自动雨刮和日行车灯会用的光敏电阻光敏电阻在有光照的情况下呈现低阻状态,没有光照的情况下,呈现高阻状态,通过光敏电阻来控制灯或用电设备的开与关
八、p沟道mos在电路中的应用?
PMOS管的作用
1、可应用于放大电路。由于MOS管放大器的输入阻抗很高,因此耦合电容可以容量较小,不必使用电解电容器。
2、很高的输入阻抗非常适合作阻抗变换。常用于多级放大器的输入级作阻抗变换。
3、可以用作可变电阻。
4、可以方便地用作恒流源。
5、可以用作电子开关。
MOS管为压控元件,你只要加到它的压控元件所需电压就能使它导通,它的导通就像三极管在饱和状态一样,导通结的压降最小。这就是常说的精典是开关作用。去掉这个控制电压经就截止。
我们知道MOS管对于整个供电系统起着稳压的作用,但是MOS管不能单独使用,它必须和电感线圈、电容等共同组成的滤波稳压电路,才能发挥充分它的优势。
九、磁场对电流的作用的应用?
磁场对电流的作用和电磁感应,前者电动机原理,后者是发电机原理。磁场对电流的作用和电磁感应,涉及三个量,磁场方向、电流方向、运动方向,他们相互垂直。
互为因果关系:在磁场中,因为有电流而运动,则是电动机,因为运行而产生电流,则为发电机。
电动机原理用左手定则,发电机原理则用右手定则。电路中的区别:电动机原理电路中有电源,发电机原理电路中有用电器(电流计),抓住这点很容易区别。
至于电流的磁效应,很简单,电流周围存在磁场(事实),磁场方向也用右手定则。
十、sepic电路的应用?
sepic电路是一种允许输出电压大于、小于或者等于输入电压的DCDC变换器。
输出电压由主控开关(三极管或MOS管)的占空比控制。
sepic电路最大的好处是输入输出同极性。尤其适合于电池供电的应用场合,允许电池电压高于或者小于所需要的输入电压。
比如一块锂电池的电压为3V ~ 4.2V,如果负载需要3.3V,那么sepic电路可以实现这种转换。
另外一个好处是输入输出的隔离,通过主回路上的电容C1实现。同时具备完全关断功能,当开关管关闭时,输出电压为0V。