一、想知道戴维南定理开路电压的问题?
答案中的减是正确的。
有的加有的减多半是因为电流I的方向不一样
二、n次齐次定理?
n次齐次函数定义: f(tx,ty)=t的n次幂*f(x,y) 对任意实数t都成立所以可以把等式的左右边都看成关于x,y,t的三元函数。
假定f可以微分上式两边都对t求偏导数,再化简(偏导符号假定为¢)设u=tx,v=ty 即得 (¢f/¢u)*(¢u/¢t)+(¢f/¢v)*(¢v/¢t)=n*t的n-1次幂*f(x,y) 因为f(u,v)=t的n次幂*f(x,y) 代入上式 (¢f/¢u)*x+(¢f/¢v)*y=n*f(u,v)/t 所以 (¢f/¢u)*u+(¢f/¢v)*v=n*f(u,v)
三、齐次性定理?
齐次定理,在线性电路中,当全部激励(独立电压源、电流源)同时增大K倍(缩小K倍),其响应(支路电流或电压)也相应的增大(缩小)K倍。
齐次定理的证明
n次齐次函数定义: f(tx,ty)=t的n次幂*f(x,y) 对任意实数t都成立所以可以把等式的左右边都看成关于x,y,t的三元函数。
假定f可以微分上式两边都对t求偏导数,再化简(偏导符号假定为¢)设u=tx,v=ty 即得 (¢f/¢u)*(¢u/¢t)+(¢f/¢v)*(¢v/¢t)=n*t的n-1次幂*f(x,y) 因为f(u,v)=t的n次幂*f(x,y) 代入上式 (¢f/¢u)*x+(¢f/¢v)*y=n*f(u,v)/t 所以 (¢f/¢u)*u+(¢f/¢v)*v=n*f(u,v)
四、戴维南定理如何求开路电压?
戴维南定理可以这样求开路电压,其端口电压电流关系方程可表为:U=R0i+uoc戴维南定理(Thevenin'stheorem):含独立电源的线性电阻单口网络N,就端口特性而言,可以等效为一个电压源和电阻串联的单口网络。
电压源的电压等于单口网络在负载开路时的电压uoc;电阻R0是单口网络内全部独立电源为零值时所得单口网络N0的等效电阻。对于含独立源,线性电阻和线性受控源的单口网络(二端网络),都可以用一个电压源与电阻相串联的单口网络(二端网络)来等效,这个电压源的电压,就是此单口网络(二端网络)的开路电压,这个串联电阻就是从此单口网络(二端网络)两端看进去,当网络内部所有独立源均置零以后的等效电阻。
uoc称为开路电压。Ro称为戴维南等效电阻。在电子电路中,当单口网络视为电源时,常称此电阻为输出电阻,常用Ro表示;当单口网络视为负载时,则称之为输入电阻,并常用Ri表示。电压源uoc和电阻Ro的串联单口网络,常称为戴维南等效电路。
当单口网络的端口电压和电流采用关联参考方向时,其端口电压电流关系方程可表为:U=R0i+uoc戴维南定理和诺顿定理是最常用的电路简化方法。由于戴维南定理和诺顿定理都是将有源二端网络等效为电源支路,所以统称为等效电源定理或等效发电机定理
五、电路分析齐次定理?
齐次定理,内容为在线性电路中,当全部激励(独立电压源、电流源)同时增大K倍(缩小K倍),其响应(支路电流或电压)也相应的增大(缩小)。
证明步骤
n次齐次函数定义: f(tx,ty)=t的n次幂*f(x,y) 对任意实数t都成立所以可以把等式的左右边都看成关于x,y,t的三元函数。
假定f可以微分上式两边都对t求偏导数,再化简(偏导符号假定为¢)设u=tx,v=ty 即得 (¢f/¢u)*(¢u/¢t)+(¢f/¢v)*(¢v/¢t)=n*t的n-1次幂*f(x,y) 因为f(u,v)=t的n次幂*f(x,y) 代入上式 (¢f/¢u)*x+(¢f/¢v)*y=n*f(u,v)/t 所以 (¢f/¢u)*u+(¢f/¢v)*v=n*f(u,v)
六、叠加定理和齐次定理中的结果分析?
齐次定理和叠加定理是相同的,他们都表明一个共同结果那就是合并同类项法则
七、齐次定理是谁提出的?
齐次定理是数学家欧拉提出的。
齐次定理
齐次定理,在线性电路中,当全部激励(独立电压源、电流源)同时增大K倍(缩小K倍),其响应(支路电流或电压)也相应的增大(缩小)K倍。
齐次定理的证明
n次齐次函数定义: f(tx,ty)=t的n次幂*f(x,y) 对任意实数t都成立所以可以把等式的左右边都看成关于x,y,t的三元函数。
假定f可以微分上式两边都对t求偏导数,再化简(偏导符号假定为¢)设u=tx,v=ty 即得 (¢f/¢u)*(¢u/¢t)+(¢f/¢v)*(¢v/¢t)=n*t的n-1次幂*f(x,y) 因为f(u,v)=t的n次幂*f(x,y) 代入上式 (¢f/¢u)*x+(¢f/¢v)*y=n*f(u,v)/t 所以 (¢f/¢u)*u+(¢f/¢v)*v=n*f(u,v)
八、正余弦定理的齐次是什么?
每个单项式得次数相同,或分子分母得次数相同,一般是指正弦,余弦得次数,有三类
1 、y=(asinx+bcosx)/(csinx+dcosx)
2 、y=(asin^x+bsinxcosx+ccos^x)/(dsin^x+ecos^x)
3 、y=asin^x+bsinxcosx+ccos^x,
对应除以cosx或cos^x,化为关于tanx得式量求解
扩展资料:
“齐次”从词面上解释是“次数相等”的意思。
微分方程中有两个地方用到“齐次”的叫法:
1、形如
的方程称为“齐次方程”,这里是指方程中每一项关于x、y的次数都是相等的,例如
都算是二次项,而
算0次项,方程
中每一项都是0次项,所以是“齐次方程”。
2、形如
(其中p和q为关于x的函数)的方程称为“齐次线性方程”,这里“线性”是指方程中每一项关于未知函数y及其导数y',y'',……的次数都是相等的(都是一次),“齐次”是指方程中没有自由项(不包含y及其导数的项),方程
就不是“齐次”的,因为方程右边的项x不含y及y的导数,因而就要称为“非齐次线性方程”。
另外在线性代数里也有“齐次”的叫法,例如
称为二次齐式,即二次齐次式的意思,因为f中每一项都是关于x、y的二次项。
将α看做锐角(注意是“看做”),按所得的角的象限,取三角函数的符号。也就是“象限定号,符号看象限”(或为“奇变偶不变,符号看象限”)。
在Kπ/2中如果K为偶数时函数名不变,若为奇数时函数名变为相反的函数名。正负号看原函数中α所在象限的正负号。关于正负号有个口诀;一全正,二正弦,三两切,四余弦,即第一象限全部为正,第二象限角,正弦为正,第三象限,正切和余切为正,第四象限,余弦为正。
或简写为“ASTC”,即“all”“sin”“tan+cot”“cos”依次为正。还可简记为:sin上cos右tan/cot对角,即sin的正值都在x轴上方,cos的正值都在y轴右方,tan/cot 的正值斜着。
比如:90°+α。定名:90°是90°的奇数倍,所以应取余函数;定号:将α看做锐角,那么90°+α是第二象限角,第二象限角的正弦为正,余弦为负。所以sin(90°+α)=cosα , cos(90°+α)=-sinα 这个非常神奇,屡试不爽~
还有一个口诀“纵变横不变,符号看象限”,例如:sin(90°+α),90°的终边在纵轴上,所以函数名变为相反的函数名,即cos,所以sin(90°+α)=cosα。
九、求助戴维南定理的题,如何算出开路电压!求详细步骤?
设节点+为A,节点—为B,4V电压源的—为C。 设A,B间的2Ω电阻为R1,C,B间的2Ω电阻为R2,A,C间的4Ω电阻为R3,6Ω电阻为R4。 先计算电压源,这时电流源作开路。 等效电路为4V电压源,负载为R3与(R1串联R2)并联, 这时R1上的电流为I11=1A,从A流向B。 再计算电流源,这时电压源作短路。 这时电流源的负载为R4与(R1并R2)串联 这时R1上的电流为I12=0.5A,从A流向B。 R1上的总电流为I1=I11+I12=1.5A,从A流向B R1上的电压=3V。 Us=3V
十、叠加定理和齐次性成立的条件?
所谓齐次性,应该满足以下条件:
(1)各变量的指数都是整数
(2)函数式中,每一项各变量的指数之和都相等。
这个设法的原因是,假设a+b+c=s
由于分式的齐次性,(a,b,c)可转变为(a/s,b/s,c/s),(分母的s由于齐次都可以消去)
这样即证明新的三元(a/s,b/s,c/s)不等式,且满足a/s+b/s+c/s=1
而事实上只要满足齐次性,可以设任何的轮换齐次式子为一常数
比如说:设ab+bc+ca=1 设abc=1 甚至设ba^2+cb^2+ac^2=1都没有问题